
FuzzGuard: Filtering out Unreachable Inputs in
Directed Grey-box Fuzzing through Deep Learning

Peiyuan Zong1,2, Tao Lv1,2, Dawei Wang1,2, Zizhuang Deng1,2, Ruigang Liang1,2, Kai Chen1,2 *
1 SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{zongpeiyuan, lvtao, wangdawei, dengzizhuang, liangruigang, chenkai}@iie.ac.cn

Mutation based Grey-box Fuzzing Overview

• Coverage-based Grey-box Fuzzing (CGF)

• Directed Grey-box Fuzzing (DGF)

Seed Mutator Seed Queue Target Program

Execution ResultsInteresting SeedsFuzzer

Mutation based Grey-box Fuzzing Overview

Seed Mutator Seed Queue Target Program

Execution ResultsInteresting SeedsFuzzer

Crash!

Crash!

• Coverage-based Grey-box Fuzzing (CGF)
Trigger more crashes.

Mutation based Grey-box Fuzzing Overview

• Coverage-based Grey-box Fuzzing (CGF)
Trigger more crashes.

• Directed Grey-box Fuzzing (DGF)
Check whether a target code really
contains a bug.

Seed Mutator Seed Queue Target Program

Execution ResultsInteresting SeedsFuzzer

Crash!

Crash!

Crash!

DGF: lots of inputs cannot reach the buggy code

Vulnerable code

• Crash reproduction

• Patch testing

• Potentially vulnerable code checking

• Annealing-based Power Schedules

• Fuzz the input closer to the target
longer.

DGF: lots of inputs cannot reach the buggy code

Vulnerable code

How to reach the vulnerable code?• Crash reproduction

• Patch testing

• Potentially vulnerable code checking

• Annealing-based Power Schedules

• Fuzz the input closer to the target
longer.

DGF: lots of inputs cannot reach the buggy code

Vulnerable code

Over 91.7% of the inputs missed the vulnerable code!

How to reach the vulnerable code?• Crash reproduction

• Patch testing

• Potentially vulnerable code checking

DGF: lots of inputs cannot reach the buggy code

Vulnerable code

Over 91.7% of the inputs missed the vulnerable code!

How to reach the vulnerable code?

• Annealing-based Power Schedules

• Fuzz the input closer to the target longer.

• Symbolic execution

• Solve path conditions for each new path.

• Crash reproduction

• Patch testing

• Potentially vulnerable code checking

DGF: lots of inputs cannot reach the buggy code

Vulnerable code

Over 91.7% of the inputs missed the vulnerable code!

How to reach the vulnerable code?

High overhead requires!

• Annealing-based Power Schedules

• Fuzz the input closer to the target longer.

• Symbolic execution

• Solve path conditions for each new path.

• Crash reproduction

• Patch testing

• Potentially vulnerable code checking

Our approach: Build an input filter for the Fuzzer

• Build a Deep Learning Model (Filter)

• Learn from previous executions.

• To identify the inputs which can reach the buggy code.

Seed Mutator Seed Queue Target Program

Execution ResultsInteresting SeedsFuzzer

Filter

Without running the target program

Challenges
• C1: Lack of balanced labeled data.

• In the early stage of fuzzing, there is even no reachable input.

• Without balanced labeled data, the trained model will be overfitting.

• C2: Lack of representative data.

• Newly inputs look quite different from the reachable ones in the training set.

• The trained model will fail to predict the reachability of the new inputs.

• C3: Efficiency.

• The time cost of training and prediction should be strictly limited.

Overview of FuzzGuard

Phase 1: Model Initialization

Phase 1: Model Initialization
C1: Lack of balanced labeled data.

• Step-forwarding approach

• Collect and map the inputs and their execution
path.

• Choosing the dominators of the buggy code as
the middle-stage targets.

• Letting the execution reach the pre-dominating
nodes first.

Phase 1: Model Initialization
C1: Lack of balanced labeled data.

• Step-forwarding approach

• Collect and map the inputs and their execution
path.

• Choosing the dominators of the buggy code as
the middle-stage targets.

• Letting the execution reach the pre-dominating
nodes first.

Phase 2: Model Prediction

Phase 2: Model Prediction

• Representative data selection

• Sample training data from each round of
mutation.

• Calculate seed similarity degree (SSD) and
sample fewer inputs for similar ones.

C2: Lack of representative data.

Testing data

Training data

Phase 3: Model Updating

Phase 3: Model Updating

• Incremental Learning

• Keep collect training data for updating
model.

• Incremental train the model when a new
mid-target node gains balanced data.

C3: Efficiency

Effectiveness Summary
• Dataset

• 45 bugs in 10 real-world programs
with different file formats.

• Results

• 1.3x -17.1x speedup (5.4x averagely)

• The earlier the model is trained, the
more time could be saved.

• The more reachable inputs generated
by the carrier fuzzer, the less effective
FuzzGuard is.

Contribution of Individual Techniques

• Without the step-forwarding approach

• Gain only 2.6x speedup averagely.

• 14/45 bugs cannot be trained.

Contribution of Individual Techniques

• Without the step-forwarding approach

• Gain only 2.6x speedup averagely.

• 14/45 bugs cannot be trained.

• Without the representative data selection

• Gain only 4.4x speedup averagely.

• The accuracy dramatically decreases
in some cases.

Understanding & Future Work

• Understanding

• The key features learned by the
model are related to the key
bytes in the PoC.

• Future Work

• The benefit to input mutation.

Vulnerable code

Conclusion

• FuzzGuard：A deep-learning-based approach to predict reachability of
program inputs without execution.

• Step-forwarding approach for handling unbalanced data training.

• Representative data selection for training data collection.

• Incremental learning for the dynamic model.

• Increase the runtime performance of the vanilla AFLGo from 1.3x to 17.1x.

Q&A

Thanks for Listening!

Code Release: https://github.com/zongpy/FuzzGuard.

