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Mutation based Grey-box Fuzzing Overview

Mutator Target Program

Execution Results

. Coverage-based Grey-box Fuzzing (CGF)
Trigger more crashes.

* Directed Grey-box Fuzzing (DGF)
Crash!  Check whether a target code really
contains a bug.

Crash!



DGF: lots of inputs cannot reach the buggy code

* Crash reproduction

* Patch testing

* Potentially vulnerable code checking

1 ThrowReaderException(...);
21if (dib_info.colors_important > 256)
3 ThrowReaderException(...);
41f ((dib_info.image_size != 0U) && (dib_info.image_size
> file_size))
5 ThrowReaderException(...);
¢'if ((dib_info.number_colors !=0) ||
: (dib_info.bits_per pixel < 16)) {
7\ .. .mage—>storage class=PseudoClass; __ .:

Vulnerable code
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Vulnerable code

How to reach the vulnerable code?

 Annealing-based Power Schedules

 Fuzz the input closer to the target longer.

Over 91.7% of the inputs missed the vulnerable code!

 Symbolic execution

e Solve path conditions for each new path.

High overhead requires!



Our approach: Build an input filter for the Fuzzer

Mutator | Seed Queue P | ~$| Target Program }

Execution Results :

* Build a Deep Learning Model (Filter)

Without running the target program
e Learn from previous executions.

. To identify the inputs which can reach the buggy code. ¥



Challenges

* In the early stage of fuzzing, there is even no reachable input.

* Without balanced labeled data, the trained model will be overfitting.

 Newly inputs look quite different from the reachable ones in the training set.

* The trained model will fail to predict the reachability of the new inputs.

* The time cost of training and prediction should be strictly limited.



Overview of FuzzGuard
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Phase 2: Model Prediction
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Phase 2: Model Prediction
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Model Prediction
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.« 1raining data

 Representative data selection

Sample training data from each round of
mutation.

e (Calculate seed similarity degree (SSD) and
sample fewer inputs for similar ones.




Phase 3: Model Updating
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Phase 3: Model Updating

* Incremental Learning

 Keep collect training data for updating
model.

I <138,10, 0,..> <0,1,0,0> :
|1 <138,47,21,..> <0,0,1,0>.} o |ncremental train the model when a new

updating data set mid-target node gains balanced data.

Model Updatmg



Effectiveness Summary

Dataset

* 45 bugs in 10 real-world programs
with different file formats.

Results
e 1.3x -17.1x speedup (5.4x averagely)

e The earlier the model is trained, the
more time could be saved.

 [The more reachable inputs generated
by the carrier fuzzer, the less effective
FuzzGuard is.

No. Program Vuln. Code NFunctions | NConstraints | Ninputs UR. | Filtered | Tarr.Go | T+FG FG Sl;?eGd]“PFGZ
18 ImageMagick v7.0.7-1 tiff.c:1934 149.1 K 1.2M 9.4M | 98.5% 925% | 200h| 152h | 13.1| 16| 8.7
19 ImageMagick v7.0.5-5 | bmp.c;R0* 2.2 1024 K 9265K | 129M | 64.3% 59.9% | 200h| 805h| 25| 17| 25
20 Jasper v2.0.14 jp2 i 139K 17.7M 28 M | 99.4% 50.9% | 200h Oh|{ 20 17| 19
21 Jasper v2.0.10 ' 740 97K | 11.3M | 99.7% 94.3% | 46.9h 37h | 12.7 | 14 | 11.1
22 Jasper v2.0.10 ., 1.7K 36.8K 6.1 M | 99.9% 94.0% | 19.7h 1.6h | 120 | 1.0 100
23 Jasper v2.0.10 g A 11.8K | 223M | 62.4% 56.0% | 200h 8h| 22| 20| 22
24 Libming v0.4.8 n. 3K | 386M|999% | 702% | 200h 32| 10| 3.1
25 Libming v0.4.7 — 323 M | 99.8% 94.7% | 200h 1 17.1 | 85| 14.1
26 Libming v0.4.7 parsetl 7 2 : bl 91.9 73| 17| 6.2
27 | Libming v0.4.7 parser.c:3381 79 790 | 384 M | 99.7% ) 33 20| 32
28 Libming v0.4.7 parser.c:3095 25 217 | 46.8M | 92.9% 65.7% | 200h 70h|{ 29| 19| 28
29 Libming v0.4.7 parser.c:2993 22 386 | 459M | 97.2% 648% | 200h| 71.8h | 28| 17| 2.7
30 Libming v0.4.7 24 294 TTM | 92.9% 63.6% | 200h| 753h | 27| 20| 25
31 Libming v0.4.7 55 423 | 12.6 M | 99.8% 61.3% 6.1 h 28h| 22| 20| 18
32 Libming v0.4.7 38 308 13M | 99.9% | 43.2% 14 h 82h| L7| 10| 16
33 Libming v0.4.7 32 340 | 16,6 M | 999% | 46.0% 7.3h 44h| 17| 10| 14
34 Libming v0.4.7 396 | 196 M | 99.9% | 43.3% 52h 34h| 15| 10| 1.1
35 Libming v0.4.7 189 M | 99.8% 37.2% 34h 25h| 14| 10| 1.1
36 Libming v0.4.7 1K | 17.6 M 1.3| 10| 1.1
37 Libming v0.4.7 34 T=3Q.ZM | 99. .01 1.3| 1.0 12
38 Libming v0.4.7 64 22K | 273 65.5% ) . 1.3 1.1 1.1
39 Libtiff v4.0.9 728 144K 8.6 M | 99.9% 91.4% 9.6 h 1.3h| 74| 10| 48
40 Libtiff v4.0.7 631 13.1K | 447M | 99.7% 52.8% | 29.6h I5h| 20| 1.1 1.3
41 Libtiff v4.0.7 728 133K | 156 M | 99.9% 51.7% 8.9h 46h| 19| 10| 17
42 Libtiff v4.0.7 416 116K | 606 M | 79.5% 363% | 779h| 498h| 1.6 | 14| 15
43 Libxml2 v2.9.4 157K | 926 M | 99.9% 944% | 200h| 17.6h 113 | 10| 52
44 Podofo v0.9.5 441K 26M | 993% | T79.7% | 200h| 40.7h| 49| 48| 18
45 Tcpreplay v4.3.0-betal | get.c:174 ol - 2033 M 1.9 17| 19
Avg. 1\ o O 54| 26| 44




Contribution of Individual Techniques

Total time for fuzzing = Time before FuzzGuard starts to training
Time before FuzzGuard (without the step-forwarding approach) starts to training

» Without the step-forwarding approach
g me  (Gain only 2.6x speedup averagely.
E 50.0 I
T M e sercsmanassasssss * 14/45bugs cannot be trained.

The bug index in Table
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» Without the step-forwarding approach
* Gain only 2.6x speedup averagely.

e 14/45 bugs cannot be trained.

 Without the representative data selection
 Gain only 4.4x speedup averagely.

 The accuracy dramatically decreases
IN some cases.
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Understanding & Future Work
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41f ((dib_info.image_size != 0U) && (dib_info.image_size

cqif ((dib_info.number colors != 0) ||

ThrowReaderException(...);
if (dib_info.colors_important > 256)
ThrowReaderException(...);

> file_size))
ThrowReaderException(...);

' (dib_info.bits_per pixel < 16)) { :

Vulnerable code

 Understanding

 The key features learned by the
model are related to the key
bytes in the PoC.

Future Work

* The benefit to input mutation.



Conclusion

 FuzzGuard: A deep-learning-based approach to predict reachability of
program inputs without execution.

o Step-forwarding approach for handling unbalanced data training.
 Representative data selection for training data collection.
* Incremental learning for the dynamic model.

* Increase the runtime performance of the vanilla AFLGo from 1.3x to 17.1x.



Thanks for Listening!

Q&A

Code Release: https://github.com/zongpy/FuzzGuard.



