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Mutation based Grey-box Fuzzing Overview

• Coverage-based Grey-box Fuzzing (CGF) 
Trigger more crashes.


• Directed Grey-box Fuzzing (DGF)      
Check whether a target code really 
contains a bug.
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DGF: lots of inputs cannot reach the buggy code

Vulnerable code

• Crash reproduction


• Patch testing


• Potentially vulnerable code checking
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longer.
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DGF: lots of inputs cannot reach the buggy code

Vulnerable code

Over 91.7% of the inputs missed the vulnerable code!

How to reach the vulnerable code?

High overhead requires!

•  Annealing-based Power Schedules


• Fuzz the input closer to the target longer.


• Symbolic execution


• Solve path conditions for each new path.

• Crash reproduction


• Patch testing


• Potentially vulnerable code checking



Our approach: Build an input filter for the Fuzzer

• Build a Deep Learning Model (Filter)


• Learn from previous executions.


• To identify the inputs which can reach the buggy code.
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Challenges
• C1: Lack of balanced labeled data.


• In the early stage of fuzzing, there is even no reachable input.


• Without balanced labeled data, the trained model will be overfitting. 


• C2: Lack of representative data.


• Newly inputs look quite different from the reachable ones in the training set.


• The trained model will fail to predict the reachability of the new inputs.


• C3: Efficiency.


• The time cost of training and prediction should be strictly limited.



Overview of FuzzGuard
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path.


• Choosing the dominators of the buggy code as  
the middle-stage targets.


• Letting the execution reach the pre-dominating 
nodes first.
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Phase 2: Model Prediction

• Representative data selection


• Sample training data from each round of 
mutation.


• Calculate seed similarity degree (SSD) and 
sample fewer inputs for similar ones.

C2: Lack of representative data.

Testing data

Training data



Phase 3: Model Updating



Phase 3: Model Updating

• Incremental Learning


• Keep collect training data for updating 
model. 


• Incremental train the model when a new 
mid-target node gains balanced data.

C3: Efficiency



Effectiveness Summary
• Dataset


• 45 bugs in 10 real-world programs 
with different file formats.


• Results


• 1.3x -17.1x speedup (5.4x averagely)


• The earlier the model is trained, the 
more time could be saved.


• The more reachable inputs generated 
by the carrier fuzzer, the less effective 
FuzzGuard is.



Contribution of Individual Techniques

• Without the step-forwarding approach


• Gain only 2.6x speedup averagely.


• 14/45 bugs cannot be trained.




Contribution of Individual Techniques

• Without the step-forwarding approach


• Gain only 2.6x speedup averagely.


• 14/45 bugs cannot be trained.


• Without the representative data selection


• Gain only 4.4x speedup averagely.


• The accuracy dramatically decreases  
in some cases.



Understanding & Future Work

• Understanding


• The key features learned by the 
model are related to the key 
bytes in the PoC.


• Future Work


• The benefit to input mutation.

Vulnerable code



Conclusion

• FuzzGuard：A deep-learning-based approach to predict reachability of 
program inputs without execution. 


• Step-forwarding approach for handling unbalanced data training.


• Representative data selection for training data collection.


• Incremental learning for the dynamic model.


• Increase the runtime performance of the vanilla AFLGo from 1.3x to 17.1x.



Q&A

Thanks for Listening!

Code Release: https://github.com/zongpy/FuzzGuard.


