FuzzGuard: Filtering out Unreachable Inputs in
Directed Grey-box Fuzzing through Deep Learning

Peiyuan Zong'2, Tao Lv1.2, Dawei Wang'2, Zizhuang Deng'.2, Ruigang Liang!-2, Kai Chen1.2"
1 SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{zongpeiyuan, Ivtao, wangdawei, dengzizhuang, liangruigang, chenkai}@iie.ac.cn

Mutation based Grey-box Fuzzing Overview

Mutator Target Program

F ¥
Il B B By I BB =B = Il I = =
3

Execution Results

 Coverage-based Grey-box Fuzzing (CGF)

* Directed Grey-box Fuzzing (DGF)

Mutation based Grey-box Fuzzing Overview

Mutator Target Program

Execution Results

. Coverage-based Grey-box Fuzzing (CGF)
Trigger more crashes.

Crash!

Mutation based Grey-box Fuzzing Overview

Mutator Target Program

Execution Results

. Coverage-based Grey-box Fuzzing (CGF)
Trigger more crashes.

* Directed Grey-box Fuzzing (DGF)
Crash! Check whether a target code really
contains a bug.

Crash!

DGF: lots of inputs cannot reach the buggy code

* Crash reproduction

* Patch testing

* Potentially vulnerable code checking

1 ThrowReaderException(...);
21if (dib_info.colors_important > 256)
3 ThrowReaderException(...);
41f ((dib_info.image_size != 0U) && (dib_info.image_size
> file_size))
5 ThrowReaderException(...);
¢'if ((dib_info.number_colors !=0) ||
: (dib_info.bits_per pixel < 16)) {
7\ .. .mage—>storage class=PseudoClass; __ .:

Vulnerable code

DGF: lots of inputs cannot reach the buggy code

* Crash reproduction

* Patch testing

* Potentially vulnerable code checking

1 ThrowReaderException(...);

21if (dib_info.colors_important > 256)

3 ThrowReaderException(...);

41f ((dib_info.image_size != 0U) && (dib_info.image_size
> file_size))

5 ThrowReaderException(...);

¢'if ((dib_info.number_colors !=0) ||
(dib_info.bits_per_pixel < 16)) {

"\ .. Amage>storage class=pseudoClass;____

Vulnerable code

How to reach the vulnerable code?

 Annealing-based Power Schedules

* Fuzz the input closer to the target
longer.

DGF: lots of inputs cannot reach the buggy code

* Crash reproduction

* Patch testing

* Potentially vulnerable code checking

1 ThrowReaderException(...);
2if (dib_info.colors_important > 256)
3 ThrowReaderException(...);
41f ((dib_info.image_size != 0U) && (dib_info.image_size
> file_size))
5 ThrowReaderException(...);
¢'if ((dib_info.number_colors !=0) ||
: (dib_info.bits_per pixel < 16)) {
7\ .. .mage—>storage class=PseudoClass; __ .:

Vulnerable code

How to reach the vulnerable code?

Annealing-based Power Schedules

* Fuzz the input closer to the target

longer.

Over 91.7% of the inputs missed the vulnerable code!

DGF: lots of inputs cannot reach the buggy code

* Crash reproduction

* Patch testing

* Potentially vulnerable code checking

1 ThrowReaderException(...);

2if (dib_info.colors_important > 256)

3 ThrowReaderException(...);

41f ((dib_info.image_size != 0U) && (dib_info.image_size
> file size))

5 ThrowReaderException(...);

6:1f ((dib_info.number_colors != 0) || 0
' (dib_info.bits_per_pixel < 16)) {

Vulnerable code

How to reach the vulnerable code?

 Annealing-based Power Schedules

 Fuzz the input closer to the target longer.

Over 91.7% of the inputs missed the vulnerable code!

 Symbolic execution

e Solve path conditions for each new path.

DGF: lots of inputs cannot reach the buggy code

* Crash reproduction

* Patch testing

* Potentially vulnerable code checking

1 ThrowReaderException(...);

2if (dib_info.colors_important > 256)

3 ThrowReaderException(...);

41f ((dib_info.image_size != 0U) && (dib_info.image_size
> file _size))

5 ThrowReaderException(...);

6:1f ((dib_info.number_colors != 0) || .
' (dib_info.bits_per_pixel < 16)) {

Vulnerable code

How to reach the vulnerable code?

 Annealing-based Power Schedules

 Fuzz the input closer to the target longer.

Over 91.7% of the inputs missed the vulnerable code!

 Symbolic execution

e Solve path conditions for each new path.

High overhead requires!

Our approach: Build an input filter for the Fuzzer

Mutator | Seed Queue P | ~$| Target Program }

Execution Results :

* Build a Deep Learning Model (Filter)

Without running the target program
e Learn from previous executions.

. To identify the inputs which can reach the buggy code. ¥

Challenges

* In the early stage of fuzzing, there is even no reachable input.

* Without balanced labeled data, the trained model will be overfitting.

 Newly inputs look quite different from the reachable ones in the training set.

* The trained model will fail to predict the reachability of the new inputs.

* The time cost of training and prediction should be strictly limited.

Overview of FuzzGuard

f FuzzGuard @Upd ting

v/\ @ Predicting
I (PDInitializing Unreachable
Data Set I -

Reachable Y

|
|

@ | Target Program
|
|

Phase 1: Model Initialization

mapping process

<138,81,79,..>

<138,27,11,..>

) &

<
=
A
=
<
vr—l
—
Vv

dominator tree (CFG) , label

Model Initialization

Phase 1: Model Initialization

mapping process C1: Lack of balanced labeled data.
. D E-<138, 81,79,..> i
JJ =D qas ... ° Step-forwarding approach
— L
input : data : » Collect and map the inputs and their execution

path.

 Choosing the dominators of the buggy code as
the middle-stage targets.

n
k=
o
< <o
A A
S O
vV V

dominator tree (CFG) ' label o |etting the execution reach the pre-dominating

Model Initialization nodes first.

Phase 1: Model Initialization

mapping process C1: Lack of balanced labeled data.
. D E-<138, 81,79,..> i
JJ =D qas ... ° Step-forwarding approach
— L
input : data : » Collect and map the inputs and their execution

path.

« Choosing the dominators of the buggy code as
~ the middle-stage targets.

-
-
» }_"
-
- - - L —-_— —-_— —-_— —_— - - —-_— L -

100%/ Pty
O | @Bs
dominator tree (CFG) ;___ label e Letting the execution reach the pre-dominating

Model Initialization nodes first.

Phase 2: Model Prediction

mid-target = B,
> >| model |

< e

98% |

Ml ... [| |=> [Program

a round of mutation '2% @

@

Model Prediction

Phase 2: Model Prediction

mid-target = B,
> >| model |

< e

Testing data 98%)

_z>

a round of mutatlon 2%

Model Prediction

Program

.« 1raining data

 Representative data selection

Sample training data from each round of
mutation.

e (Calculate seed similarity degree (SSD) and
sample fewer inputs for similar ones.

Phase 3: Model Updating

Model Updating

Phase 3: Model Updating

* Incremental Learning

 Keep collect training data for updating
model.

I <138,10, 0,..> <0,1,0,0> :
|1 <138,47,21,..> <0,0,1,0>.} o |ncremental train the model when a new

updating data set mid-target node gains balanced data.

Model Updatmg

Effectiveness Summary

Dataset

* 45 bugs in 10 real-world programs
with different file formats.

Results
e 1.3x -17.1x speedup (5.4x averagely)

e The earlier the model is trained, the
more time could be saved.

 [The more reachable inputs generated
by the carrier fuzzer, the less effective
FuzzGuard is.

No. Program Vuln. Code NFunctions | NConstraints | Ninputs UR. | Filtered | Tarr.Go | T+FG FG Sl;?eGd]“PFGZ
18 ImageMagick v7.0.7-1 tiff.c:1934 149.1 K 1.2M 9.4M | 98.5% 925% | 200h| 152h | 13.1| 16| 8.7
19 ImageMagick v7.0.5-5 | bmp.c;R0* 2.2 1024 K 9265K | 129M | 64.3% 59.9% | 200h| 805h| 25| 17| 25
20 Jasper v2.0.14 jp2 i 139K 17.7M 28 M | 99.4% 50.9% | 200h Oh|{ 20 17| 19
21 Jasper v2.0.10 ' 740 97K | 11.3M | 99.7% 94.3% | 46.9h 37h | 12.7 | 14 | 11.1
22 Jasper v2.0.10 ., 1.7K 36.8K 6.1 M | 99.9% 94.0% | 19.7h 1.6h | 120 | 1.0 100
23 Jasper v2.0.10 g A 11.8K | 223M | 62.4% 56.0% | 200h 8h| 22| 20| 22
24 Libming v0.4.8 n. 3K | 386M|999% | 702% | 200h 32| 10| 3.1
25 Libming v0.4.7 — 323 M | 99.8% 94.7% | 200h 1 17.1 | 85| 14.1
26 Libming v0.4.7 parsetl 7 2 : bl 91.9 73| 17| 6.2
27 | Libming v0.4.7 parser.c:3381 79 790 | 384 M | 99.7%) 33 20| 32
28 Libming v0.4.7 parser.c:3095 25 217 | 46.8M | 92.9% 65.7% | 200h 70h|{ 29| 19| 28
29 Libming v0.4.7 parser.c:2993 22 386 | 459M | 97.2% 648% | 200h| 71.8h | 28| 17| 2.7
30 Libming v0.4.7 24 294 TTM | 92.9% 63.6% | 200h| 753h | 27| 20| 25
31 Libming v0.4.7 55 423 | 12.6 M | 99.8% 61.3% 6.1 h 28h| 22| 20| 18
32 Libming v0.4.7 38 308 13M | 99.9% | 43.2% 14 h 82h| L7| 10| 16
33 Libming v0.4.7 32 340 | 16,6 M | 999% | 46.0% 7.3h 44h| 17| 10| 14
34 Libming v0.4.7 396 | 196 M | 99.9% | 43.3% 52h 34h| 15| 10| 1.1
35 Libming v0.4.7 189 M | 99.8% 37.2% 34h 25h| 14| 10| 1.1
36 Libming v0.4.7 1K | 17.6 M 1.3| 10| 1.1
37 Libming v0.4.7 34 T=3Q.ZM | 99. .01 1.3| 1.0 12
38 Libming v0.4.7 64 22K | 273 65.5%) . 1.3 1.1 1.1
39 Libtiff v4.0.9 728 144K 8.6 M | 99.9% 91.4% 9.6 h 1.3h| 74| 10| 48
40 Libtiff v4.0.7 631 13.1K | 447M | 99.7% 52.8% | 29.6h I5h| 20| 1.1 1.3
41 Libtiff v4.0.7 728 133K | 156 M | 99.9% 51.7% 8.9h 46h| 19| 10| 17
42 Libtiff v4.0.7 416 116K | 606 M | 79.5% 363% | 779h| 498h| 1.6 | 14| 15
43 Libxml2 v2.9.4 157K | 926 M | 99.9% 944% | 200h| 17.6h 113 | 10| 52
44 Podofo v0.9.5 441K 26M | 993% | T79.7% | 200h| 40.7h| 49| 48| 18
45 Tcpreplay v4.3.0-betal | get.c:174 ol - 2033 M 1.9 17| 19
Avg. 1\ o O 54| 26| 44

Contribution of Individual Techniques

Total time for fuzzing = Time before FuzzGuard starts to training
Time before FuzzGuard (without the step-forwarding approach) starts to training

» Without the step-forwarding approach
g me (Gain only 2.6x speedup averagely.
E 50.0 I
T M e sercsmanassasssss * 14/45bugs cannot be trained.

The bug index in Table

Time (hours)

Accuracy

Contribution of Individual Techniques

Total time for fuzzing = Time before FuzzGuard starts to training
Time before FuzzGuard (without the step-forwarding approach) starts to training

200.0

150.0

100.0

50.0

0.0 =

N .l I

- M 1 M~ &= M 1~ N =M

n ~ &
FFFFF N N N N «

The bug index in Table

—

™

Mm W N~ O
Mm MO ™M o

- FuzzGuard (with the representative data selection)
FuzzGuard (without the representative data selection)

1 00.0% ’, T —— "\/—
yd

90.0%

80.0%

70.0%

10 20

The bug index in Table

30

—

<

™M W
< <«

40

o

» Without the step-forwarding approach
* Gain only 2.6x speedup averagely.

e 14/45 bugs cannot be trained.

 Without the representative data selection
 Gain only 4.4x speedup averagely.

 The accuracy dramatically decreases
IN some cases.

00000000h
00000010h
00000020h: 01 00 00 00 00 00 00 00 00 00 26 26 26 26 26 26
00000030h
00000040h
00000050h

Understanding & Future Work

0 1 2 3 4 5 6 7 8 9 a b c¢c d e f

number_colors bits per pixel

:28 00 00 00 04 00 00 00 01 00 00 00 |01 00]20 00
: 00 26 00 00 17 00 00 00 00 00 00 00 00 00 00 00

:26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
:26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
:26 26 26 28 36

1

2

3

5

41f ((dib_info.image_size != 0U) && (dib_info.image_size

cqif ((dib_info.number colors != 0) ||

ThrowReaderException(...);
if (dib_info.colors_important > 256)
ThrowReaderException(...);

> file_size))
ThrowReaderException(...);

' (dib_info.bits_per pixel < 16)) { :

Vulnerable code

 Understanding

 The key features learned by the
model are related to the key
bytes in the PoC.

Future Work

* The benefit to input mutation.

Conclusion

 FuzzGuard: A deep-learning-based approach to predict reachability of
program inputs without execution.

o Step-forwarding approach for handling unbalanced data training.
 Representative data selection for training data collection.
* Incremental learning for the dynamic model.

* Increase the runtime performance of the vanilla AFLGo from 1.3x to 17.1x.

Thanks for Listening!

Q&A

Code Release: https://github.com/zongpy/FuzzGuard.

